Data from animal-borne inertial sensors are widely used to investigate several aspects of an animal's life, such as energy expenditure, daily activity patterns and behaviour. Accelerometer data used in conjunction with machine learning algorithms have been the tool of choice for characterising animal behaviour. Although machine learning models perform reasonably well, they may not rely on meaningful features, nor lend themselves to physical interpretation of the classification rules. This lack of interpretability and control over classification outcomes is of particular concern where different behaviours have different frequency of occurrence and duration, as in most natural systems, and calls for the development of alternative methods. Biomechanical approaches to human activity classification could overcome these shortcomings, yet their full potential remains untapped for animal studies. 2. We propose a general framework for behaviour recognition using accelerometers, and develop a hybrid model where (a) biomechanical features characterise movement dynamics, and (b) a node-based hierarchical classification scheme employs simple machine learning algorithms at each node to find feature-value thresholds separating different behaviours. Using triaxial accelerometer data collected on 10 wild Kalahari meerkats, and annotated video recordings of each individual as groundtruth, this hybrid model was validated in three scenarios: (a) when each behaviour was equally represented (EQDIST), (b) when naturally imbalanced datasets were considered (STRAT) and (c) when data from new individuals were considered (LOIO). 3. A linear-kernel Support Vector Machine at each node of our classification scheme yielded an overall accuracy of >95% for each scenario. Our hybrid approach had a 2.7% better average overall accuracy than top-performing classical machine learning approaches. Further, we showed that not all models with high overall accuracy returned accurate behaviour-specific performance, and good performance during EQDIST did not always generalise to STRAT and LOIO. 4. Our hybrid model took advantage of robust machine learning algorithms for automatically estimating decision boundaries between behavioural classes. This not only achieved high classification performance but also permitted biomechanical interpretation of classification outcomes. The framework presented here provides the flexibility to adapt models to required levels of behavioural resolution, and has the potential to facilitate meaningful model sharing between studies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms.
Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids. Hybrid powertrains are designed to switch from one power source to another to maximize both fuel efficiency and energy efficiency. In hybrid electric vehicles, for instance, the electric motor is more efficient at producing torque, or turning power, while the combustion engine is better for maintaining high speed.
Machine learning techniques have been extensively developed in the field of electricity theft detection. However, almost all typical models primarily rely on electricity consumption data to identify fraudulent users, often neglecting other pertinent househ ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...