Machine learning methods to assist energy system optimization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent ...
Aerodynamic shape optimization has become of primary importance for the aerospace industry over the last years. Most of the method developed so far have been shown to be either computationally very expensive, or to have low dimensional search space. In thi ...
This paper showcases the Sliding Frank-Wolfe (SFW), which is a novel optimization algorithm to solve the BLASSO sparse spikes super-resolution problem. The BLASSO is the continuous (i.e. off-thegrid or grid-less) counterpart of the well-known `1 sparse reg ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
The design and analysis of machine learning algorithms typically considers the problem of learning on a single task, and the nature of learning in such scenario is well explored. On the other hand, very often tasks faced by machine learning systems arrive ...
In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (Gi-max) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutatio ...
The training of molecular models of quantum mechanical properties based on statistical machine learning requires large data sets which exemplify the map from chemical structure to molecular property. Intelligent a priori selection of training examples is o ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
The majority of problems in aircraft production and operation require decisions made in the presence of uncertainty. For this reason aerodynamic designs obtained with traditional deterministic optimization techniques seeking only optimality in a specific s ...