**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Extensive amenability and a Tits alternative for topological full groups

Abstract

This dissertation investigates the amenability of topological full groups using a property of group actions called extensive amenability. Extensive amenability is a core concept of several amenability results for groups of dynamical origin. We study its properties and present some applications.

The main result of the thesis is such an application, a Tits alternative for topological full groups of minimal actions of finitely generated groups. On the one hand, we show that topological full groups of minimal actions of virtually cyclic groups are amenable. On the other hand, if $G$ is a finitely generated not virtually cyclic group, we construct a minimal free action of $G$ on a Cantor space such that the topological full group contains a non-abelian free group.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (2)

Loading

Loading

Related concepts (8)

Free abelian group

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A bas

Cyclic group

In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible

Topological manifold

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topologic

Grigorchuk and Medynets recently announced that the topological full group of a minimal Cantor Z-action is amenable. They asked whether the statement holds for all minimal Cantor actions of general amenable groups as well. We answer in the negative by producing a minimal Cantor Z2-action for which the topological full group contains a non-abelian free group.

2013The notion of active sum provides an analogue for groups of what the direct sum is for abelian groups. One natural question then is which groups are the active sum of a family of cyclic subgroups. Many groups have been found to give a positive answer to this question, while the case of finite metacyclic groups remained unknown. In this note we show that every finite metacyclic group can be recovered as the active sum of a discrete family of cyclic subgroups.