Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper reports a method for label-free single-cell biophysical analysis of multiple cells trapped in suspension by electrokinetic forces. Tri-dimensional pillar electrodes arranged along the width of a microfluidic chamber define actuators for single cell trapping and selective release by electrokinetic force. Moreover, a rotation can be induced on the cell in combination with a negative DEP force to retain the cell against the flow. The measurement of the rotation speed of the cell as a function of the electric field frequency define an electrorotation spectrum that allows to study the dielectric properties of the cell. The system presented here shows for the first time the simultaneous electrorotation analysis of multiple single cells in separate micro cages that can be selectively addressed to trap and/or release the cells. Chips with 39 micro-actuators of different interelectrode distance were fabricated to study cells with different sizes. The extracted dielectric properties of HeLa, HEK 293, and human immortalized T lymphocytes cells were found in agreements with previous findings. Moreover, the membrane capacitance of M17 neuroblastoma cells was investigated and found to fall in in the range of 7.49 ± 0.39 mF/m2.
, , ,
Philippe Renaud, Sandro Carrara, Francesca Stradolini, Tugba Kilic, Fatemeh Navaee