Publication

Evaluating and Interpreting Deep Convolutional Neural Networks via Non-negative Matrix Factorization

Edo Collins
2019
EPFL thesis
Abstract

With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia. Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, over-parameterized networks would be prone to overfitting. This apparent discrepancy is exacerbated by our inability to inspect and interpret the high-dimensional, non-linear, latent representations they learn, which has led many to refer to neural networks as black-boxes''. The Law of Parsimony states that simpler solutions are more likely to be correct than complex ones''. Since they perform quite well in practice, a natural question to ask, then, is in what way are neural networks simple?

We propose that compression is the answer. Since good generalization requires invariance to irrelevant variations in the input, it is necessary for a network to discard this irrelevant information. As a result, semantically similar samples are mapped to similar representations in neural network deep feature space, where they form simple, low-dimensional structures. Conversely, a network that overfits relies on memorizing individual samples. Such a network cannot discard information as easily.

In this thesis we characterize the difference between such networks using the non-negative rank of activation matrices. Relying on the non-negativity of rectified-linear units, the non-negative rank is the smallest number that admits an exact non-negative matrix factorization. We derive an upper bound on the amount of memorization in terms of the non-negative rank, and show it is a natural complexity measure for rectified-linear units.

With a focus on deep convolutional neural networks trained to perform object recognition, we show that the two non-negative factors derived from deep network layers decompose the information held therein in an interpretable way. The first of these factors provides heatmaps which highlight similarly encoded regions within an input image or image set. We find that these networks learn to detect semantic parts and form a hierarchy, such that parts are further broken down into sub-parts. We quantitatively evaluate the semantic quality of these heatmaps by using them to perform semantic co-segmentation and co-localization. In spite of the convolutional network we use being trained solely with image-level labels, we achieve results comparable or better than domain-specific state-of-the-art methods for these tasks.

The second non-negative factor provides a bag-of-concepts representation for an image or image set. We use this representation to derive global image descriptors for images in a large collection. With these descriptors in hand, we perform two variations content-based image retrieval, i.e. reverse image search. Using information from one of the non-negative matrix factors we obtain descriptors which are suitable for finding semantically related images, i.e., belonging to the same semantic category as the query image. Combining information from both non-negative factors, however, yields descriptors that are suitable for finding other images of the specific instance depicted in the query image, where we again achieve state-of-the-art performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Convolutional neural network
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
Types of artificial neural networks
There are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Show more
Related publications (439)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.