Elementary functionIn mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or x1/n). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.
Ramanujan–Petersson conjectureIn mathematics, the Ramanujan conjecture, due to , states that Ramanujan's tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12 where , satisfies when p is a prime number. The generalized Ramanujan conjecture or Ramanujan–Petersson conjecture, introduced by , is a generalization to other modular forms or automorphic forms.
Radius of convergenceIn mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or . When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges.
Pointwise convergenceIn mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) The function is said to be the pointwise limit function of the Sometimes, authors use the term bounded pointwise convergence when there is a constant such that .
Formula OneFormula One (more commonly known as Formula 1 or F1) is the highest class of international racing for open-wheel single-seater formula racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). The FIA Formula One World Championship has been one of the premier forms of racing around the world since its inaugural season in 1950. The word formula in the name refers to the set of rules to which all participants' cars must conform. A Formula One season consists of a series of races, known as Grands Prix.
Formula ThreeFormula Three, also called Formula 3, abbreviated as F3, is a third-tier class of open-wheel formula racing. The various championships held in Europe, Australia, South America and Asia form an important step for many prospective Formula One drivers. Formula Three (adopted by the FIA in 1950) evolved from postwar auto racing, with lightweight tube-frame chassis powered by 500 cc motorcycle engines (notably Nortons and JAP speedway).
Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
Convergence of random variablesIn probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied.
Artesian wellAn artesian well is a well that brings groundwater to the surface without pumping because it is under pressure within a body of rock and/or sediment known as an aquifer. When trapped water in an aquifer is surrounded by layers of impermeable rock or clay, which apply positive pressure to the water, it is known as an artesian aquifer. If a well were to be sunk into an artesian aquifer, water in the well-pipe would rise to a height corresponding to the point where hydrostatic equilibrium is reached.
Well drainageWell drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells (vertical drainage) to improve the soils by controlling water table levels and soil salinity. Subsurface (groundwater) drainage for water table and soil salinity in agricultural land can be done by horizontal and vertical drainage systems. Horizontal drainage systems are drainage systems using open ditches (trenches) or buried pipe drains. Vertical drainage systems are drainage systems using pumped wells, either open dug wells or tube wells.