Finding Perfect Matchings in Bipartite Hypergraphs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different col ...
Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. A graph is (s, k)-polar if there exists a partition A, B of its vertex set such that A induces a complete s-partite grap ...
Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. A graph is (s,k)-polar if there exists a partition A,B of its vertex set such that A induces a complete s-partite graph ...
We determine the dynamical dimer correlation functions of quantum dimer models at the Rokhsar-Kivelson point on the bipartite square and cubic lattices and the non-bipartite triangular lattice. On the basis of an algorithmic idea by Henley, we simulate a s ...
We consider the problem of finding in a graph a set R of edges to be colored in red so that there are maximum matchings having some prescribed numbers of red edges. For regular bipartite graphs with n nodes on each side, we give sufficient conditions f ...
Graph theory experienced a remarkable increase of interest among the scientific community during the last decades. The vertex coloring problem (Min Coloring) deserves a particular attention rince it has been able to capture a wide variety of applications. ...
It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even n ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even n ...
It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even n ...