Ising Model: Local Spin Correlations and Conformal Invariance
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We show how to combine our earlier results to deduce strong convergence of the interfaces in the planar critical Ising model and its random-cluster representation to Schramm’s SLE curves with parameter κ = 3 and κ = 16 / 3 respectively. ...
We consider the isotropic XY quantum spin chain in a random external field in the z direction, with single site distributions given by i.i.d. random variables times the critical decaying envelope j−1/2. Our motivation is the study of many-body localization ...
We rigorously prove the existence and the conformal invariance of scaling limits of the magnetization and multi-point spin correlations in the critical Ising model on arbitrary simply connected planar domains. This solves a number of conjectures coming fro ...
We study the critical Ising model on the square lattice in bounded simply connected domains with + and free boundary conditions. We relate the energy density of the model to a discrete fermionic spinor and compute its scaling limit by discrete complex anal ...
We review recent results with D. Chelkak and K. Izyurov, where we rigorously prove existence and conformal invariance of scaling limits of magnetization and multi-point spin correlations in the critical Ising model on an arbitrary simply connected planar d ...
Most two-dimensional massless field theories carry represe ntations of the Virasoro algebra as consequences of their conformal symmetry. Recently, conformal symmetry has been rigorously established for scaling limit s of lattice models by means of discrete ...
We study the 2-dimensional Ising model at critical temperature on a smooth simply-connected graph Ω.We rigorously prove the conformal invariance of arbitrary spin-pattern probabilities centered at a point a and derive formulas to compute the probabilities ...
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and t ...
We explore the connection between the transfer matrix formalism and discrete complex analysis approach to the two dimensional Ising model. We construct a discrete analytic continuation matrix, analyze its spectrum and establish a direct connection with the ...
Building on the generalization of the exactly dimerized Majumdar-Ghosh ground state to arbitrary spin S for the Heisenberg chain with a three-site term (Si-1 . S-i)(S-i . Si+1) + H.c., we use density-matrix renormalization group simulations and exact diago ...