AccelerationIn mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes: the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force; that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.
Jerk (physics)In physics, jerk or jolt is the rate at which an object's acceleration changes with respect to time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s). As a vector, jerk j can be expressed as the first time derivative of acceleration, second time derivative of velocity, and third time derivative of position: Where: a is acceleration v is velocity r is position t is time Third-order differential equations of the form are sometimes called jerk equations.
Gravitational accelerationIn physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation.
Psychology of selfThe psychology of self is the study of either the cognitive, conative or affective representation of one's identity, or the subject of experience. The earliest formulation of the self in modern psychology derived from the distinction between the self as I, the subjective knower, and the self as Me, the object that is known. Current views of the self in psychology position the self as playing an integral part in human motivation, cognition, affect, and social identity.
Proper accelerationIn relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Self-knowledge (psychology)Self-knowledge is a term used in psychology to describe the information that an individual draws upon when finding answers to the questions "What am I like?" and "Who am I?". While seeking to develop the answer to this question, self-knowledge requires ongoing self-awareness and self-consciousness (which is not to be confused with consciousness). Young infants and chimpanzees display some of the traits of self-awareness and agency/contingency, yet they are not considered as also having self-consciousness.
SelfIn philosophy, the self is the relationship of an individual’s own being, knowledge and values. Self relates the experiences of one's inner and outer living in presence. The first-person perspective distinguishes selfhood from personal identity. Whereas "identity" is (literally) sameness and may involve categorization and labeling, selfhood implies a first-person perspective and suggests potential uniqueness. Conversely, "person" is used as a third-person reference.
Self-organizationSelf-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system.
Molecular self-assemblyIn chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolecular. Commonly, the term molecular self-assembly refers to the former, while the latter is more commonly called folding. Molecular self-assembly is a key concept in supramolecular chemistry. This is because assembly of molecules in such systems is directed through non-covalent interactions (e.
KinematicsKinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system.