Publication

Impact of Intermittent Operation on Lifetime and Performance of a PEM Water Electrolyzer

Vasiliki Tileli, Tzu-Hsien Shen
2019
Journal paper
Abstract

The aim of this study is to provide a better understanding of performance degrading mechanisms occurring when a proton exchange membrane water electrolyzer (PEM-WE) is coupled with renewable energies, where times of operation and idle periods alternate. An accelerated stress test (AST) is proposed, mimicking a fluctuating power supply by operating the electrolyzer cell between high (3 A cm(geo)(-2)) and low current densities (0.1 A cm(geo)(-2)), alternating with idle periods during which no current is supplied and the cell rests at open circuit voltage (OCV). Polarization curves, periodically recorded during the OCV-AST, reveal an initial increase in activity (approximate to 50 mV after 10 cycles) followed by a significant decrease in performance during prolonged OCV cycling due to an increasing high frequency resistance (HFR) (approximate to 1.6-fold after 718 cycles). These performance changes can clearly be related to the OCV periods, since they are not observed in a reference experiment where the OCV period is replaced by a potential hold at 1.3 V. The origin of the phenomena, which are responsible for the initial performance gain as well as the subsequent decay are analyzed via detailed electrochemical and physical characterization of the MEAs, and an operating strategy to prevent performance degradation is proposed. (c) The Author(s) 2019. Published by ECS.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Electrolysis of water
Electrolysis of water is using electricity to split water into oxygen (O2) and hydrogen (H2) gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach circa 2,800°C. Water electrolysis requires a minimum potential difference of 1.
Fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
Hydrogenics
Hydrogenics is a developer and manufacturer of hydrogen generation and fuel cell products based on water electrolysis and proton-exchange membrane (PEM) technology. Hydrogenics is divided into two business units: OnSite Generation and Power Systems. Onsite Generation is headquartered in Oevel, Belgium and had 73 full-time employees as of December 2013. Power Systems is based in Mississauga, Ontario, Canada, with a satellite facility in Gladbeck, Germany. It had 62 full-time employees as of December 2013.
Show more
Related publications (33)

Perspective Alkaline electrolyzers: Powering industries and overcoming fundamental challenges

Hubert Girault

For the sustainable development of the renewable hydrogen sector, alkaline electrolysis appears to be a technology of choice. Nevertheless, despite its long history that showed its reliability in the industrial field and despite the traditional belief from ...
Cell Press2024

The thermodynamic and life-cycle assessments of a novel charging station for electric vehicles in dynamic and steady-state conditions

Jan Van Herle, Hossein Pourrahmani, Chengzhang Xu

The current study performs the thermodynamic and life-cycle assessments (LCA) of a novel charging station in two system designs. The goal is to design an efficient charging station for electric vehicles with high efficiencies and low environmental impacts ...
NATURE PORTFOLIO2023

Hybrid Modular Multilevel Converter for Pumped Hydro Storage Applications

Miodrag Basic

Energy balance in a power system must be maintained at all times, regardless of the variations in generation and consumption. Large Pumped Hydro Storage Plants (PHSPs) are introduced to the power system to accumulate the excess of energy during the low dem ...
EPFL2022
Show more
Related MOOCs (17)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.