Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Near interfacial residual stresses are investigated in a joint composed of aluminum alloy and dual phase steel. A small step neutron diffraction scan was initially performed to determine the weld interface position along the measured transverse cross section. Residual stress measurements were then performed in three orthogonal directions for steel and aluminum using {211} and {311} diffraction peaks, respectively. The small step scan enables to identify the wavy nature of the interface, which has been subsequently combined in the residual stress calculation. The resultant of all three components of the residual stresses is almost zero along the mid-thickness of the steel plate, validating the estimated stresses. Near the interface, residual stresses on the steel reveal an "M" shape distribution while in the aluminum sheet they show a "W" shape. The interfacial residual stresses in the steel originate from the thermomechanical processing condition, phase transformation and the mismatch in the coefficients of thermal expansion (CTE). At the vicinity of the interface, the aluminum plate presents a distribution of residual stresses similar to a superposition of residual stresses resulting from an arc welding and the effect of mismatch in CTE.
Alain Nussbaumer, Heikki Tapani Remes, Halid Can Yildirim
Roland Logé, Markus Strobl, Nikola Kalentics