**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Local Theory of the Insulating State

Abstract

An insulator differs from a metal because of a different organization of the electrons in their ground state. In recent years this feature has been probed by means of a geometrical property, the quantum metric tensor, which addresses the system as a whole, and is therefore limited to macroscopically homogenous samples. Here we show that an analogous approach leads to a localization marker, which can detect the metallic versus insulating character of a given sample region using as the sole ingredient the ground state electron distribution, even in the Anderson case (where the spectrum is gapless). When applied to an insulator with a nonzero Chern invariant, our marker is capable of discriminating the insulating nature of the bulk from the conducting nature of the boundary. Simulations (both model Hamiltonian and first principles) on several test cases validate our theory.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (32)

Related concepts (35)

Chern class

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants. Chern classes were introduced by . Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold.

Coherent sheaf

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.

Stable vector bundle

In mathematics, a stable vector bundle is a (holomorphic or algebraic) vector bundle that is stable in the sense of geometric invariant theory. Any holomorphic vector bundle may be built from stable ones using Harder–Narasimhan filtration. Stable bundles were defined by David Mumford in and later built upon by David Gieseker, Fedor Bogomolov, Thomas Bridgeland and many others. One of the motivations for analyzing stable vector bundles is their nice behavior in families.

Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...

State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical ...

Zsolt Patakfalvi, Joseph Allen Waldron

We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...