Principle of localityIn physics, the principle of locality states that an object is influenced directly only by its immediate surroundings. A theory that includes the principle of locality is said to be a "local theory". This is an alternative to the concept of instantaneous, or "non-local" action at a distance. Locality evolved out of the field theories of classical physics. The idea is that for a cause at one point to have an effect at another point, something in the space between those points must mediate the action.
TensorIn mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.
Metric signatureIn mathematics, the signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, the v represents the time or virtual dimension, and the p for the space and physical dimension.
Nature versus nurtureNature versus nurture is a long-standing debate in biology and society about the balance between two competing factors which determine fate: genetics (nature) and environment (nurture). The alliterative expression "nature and nurture" in English has been in use since at least the Elizabethan period and goes back to medieval French. The complementary combination of the two concepts is an ancient concept (ἁπό φύσεως καὶ εὐτροφίας). Nature is what people think of as pre-wiring and is influenced by genetic inheritance and other biological factors.
Tensor calculusIn mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi-Civita, it was used by Albert Einstein to develop his general theory of relativity. Unlike the infinitesimal calculus, tensor calculus allows presentation of physics equations in a form that is independent of the choice of coordinates on the manifold.