Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a novel distributed approach for solving AC power flow (PF) problems. The optimization problem is reformulated into a distributed form using a communication structure corresponding to a hypergraph, by which complex relationships between ...
With the increasing prevalence of massive datasets, it becomes important to design algorithmic techniques for dealing with scenarios where the input to be processed does not fit in the memory of a single machine. Many highly successful approaches have emer ...
Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional graphs only model the pairwise connectivity in molecules, failing to adequately represent higher order connections, such as m ...
A motif is a frequently occurring subgraph of a given directed or undirected graph G (Milo et al.). Motifs capture higher order organizational structure of G beyond edge relationships, and, therefore, have found wide applications such as in graph clusterin ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
Given a graph F, a hypergraph is a Berge-F if it can be obtained by expanding each edge in F to a hyperedge containing it. A hypergraph H is Berge-F-saturated if H does not contain a subhypergraph that is a Berge-F, but for any edge e is an element of E((H ...
Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hypergraphs, which are much richer and may offer new applicati ...
Let c denote the largest constant such that every C-6-free graph G contains a bipartite and C-4-free subgraph having a fraction c of edges of G. Gyori, Kensell and Tompkins showed that 3/8