Electrically tunable quantum emitters in an ultrathin graphene-hexagonal boron nitride van der Waals heterostructure
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Over the past decade, lead halide perovskites (LHPs) have received considerable attention thanks to their impressive optoelectronic properties. Today, LHP-based devices are one of the most efficient single-junction solar cells, with power-conversion effici ...
Graphene nanoribbons (GNRs) - one-dimensional strips of graphene - share many of the exciting properties of graphene, such as ballistic transport over micron dimensions, strength and flexibility, but more importantly, they exhibit a tunable band gap that d ...
Two-dimensional (2D) materials have attracted increasing attention over the last decade owing to their remarkable mechanical, electrical and optical properties. Following the groundbreaking discovery of graphene, a plethora of other atomically-thin materia ...
2D materials such as graphene, hexagonal boron nitride (h-BN), or transition metal dichalcogenides, and their heterostacks are gaining increasing interest because of their extraordinary properties, which can range from superconductivity to large charge car ...
This thesis investigates novel single-molecule luminescence phenomena at their inherent, sub-molecular length scale. The microscopic understanding of luminescence processes will be crucial for the continued improvement of organic optoelectronic and semicon ...
The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modulated he ...
Since the seminal report about the first Candela-class-brightness InGaN blue light-emitting diodes (LEDs) by Shuji Nakamura et al. in 1994, III-nitride semiconductors have been one of the most important platforms for optoelectronic devices. The achieve ...
Defects in solid-state systems can be both detrimental, deteriorating the quality of materials, or desired, thanks to the novel functionality they bring. Optically active point defects, producing fluorescent light, are a great example of the latter. Natura ...
Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation techni ...