Stellar mass lossStellar mass loss is a phenomenon observed in stars. All stars lose some mass over their lives at widely varying rates. Triggering events can cause the sudden ejection of a large portion of the star's mass. Stellar mass loss can also occur when a star gradually loses material to a binary companion or into interstellar space. A number of factors can contribute to the loss of mass in giant stars, including: Gravitational attraction of a binary companion Coronal mass ejection-type events Ascension to red giant or red supergiant status The Sun, a low-mass star, loses mass due to the solar wind at a very small rate, 2e-14 solar masses per year.
Magellanic CloudsThe Magellanic Clouds (Magellanic system or Nubeculae Magellani) are two irregular dwarf galaxies in the southern celestial hemisphere. Orbiting the Milky Way galaxy, these satellite galaxies are members of the Local Group. Because both show signs of a bar structure, they are often reclassified as Magellanic spiral galaxies. The two galaxies are the following: Large Magellanic Cloud (LMC), about away Small Magellanic Cloud (SMC), about away The Magellanic clouds are visible to the unaided eye from the Southern Hemisphere, but cannot be observed from the most northern latitudes.
Starburst galaxyA starburst galaxy is one undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formation rate of the Milky Way galaxy is approximately 3 M☉/yr, while starburst galaxies can experience star formation rates of 100 M☉/yr or more. In a starburst galaxy, the rate of star formation is so large that the galaxy will consume all of its gas reservoir, from which the stars are forming, on a timescale much shorter than the age of the galaxy.
Galaxy clusterA galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after galaxy filaments and were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM).
Andromeda GalaxyThe Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way, where the Solar System resides. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a diameter of about and is approximately from Earth. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the princess who was the wife of Perseus in Greek mythology.
Main sequence turnoffThe turnoff point for a star refers to the point on the Hertzsprung–Russell diagram where it leaves the main sequence after its main fuel is exhausted - the main sequence turnoff. By plotting the turnoff points of individual stars in a star cluster one can estimate the cluster's age. Red dwarfs, also referred to as classM stars, are stars of 0.08–0.40 solar masses. They have sufficient mass to sustain hydrogen-to-helium fusion via the proton–proton chain reaction, but they do not have sufficient mass to create the temperatures and pressures necessary to fuse helium into carbon, nitrogen or oxygen (see CNO cycle).
K-type main-sequence starA K-type main-sequence star, also referred to as a K-type dwarf red dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars ("red dwarfs") and yellow/white G-type main-sequence stars. They have masses between 0.6 and 0.9 times the mass of the Sun and surface temperatures between 3,900 and 5,300 K. These stars are of particular interest in the search for extraterrestrial life due to their stability and long lifespan.
MetallicityIn astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-dark) matter in the universe is either hydrogen or helium, and astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium". This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting solid.
BrakeA brake is a mechanical device that inhibits motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of friction. Most brakes commonly use friction between two surfaces pressed together to convert the kinetic energy of the moving object into heat, though other methods of energy conversion may be employed. For example, regenerative braking converts much of the energy to electrical energy, which may be stored for later use.
G-type main-sequence starA G-type main-sequence star (spectral type: G-V), also often, and imprecisely called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K. Like other main-sequence stars, a G-type main-sequence star converts the element hydrogen to helium in its core by means of nuclear fusion, but can also fuse helium when hydrogen runs out.