The turnoff point for a star refers to the point on the Hertzsprung–Russell diagram where it leaves the main sequence after its main fuel is exhausted - the main sequence turnoff.
By plotting the turnoff points of individual stars in a star cluster one can estimate the cluster's age.
Red dwarfs, also referred to as classM stars, are stars of 0.08–0.40 solar masses. They have sufficient mass to sustain hydrogen-to-helium fusion via the proton–proton chain reaction, but they do not have sufficient mass to create the temperatures and pressures necessary to fuse helium into carbon, nitrogen or oxygen (see CNO cycle). However, all their hydrogen is available for fusion, and low temperature and pressure means a lifetime measured in trillions of years. For example, the lifespan of a star of 0.1 solar masses is six trillion years. This lifespan greatly exceeds the current age of the universe, therefore all red dwarfs are main sequence stars. Even though extremely long lived, those stars will eventually run out of fuel. Once all the available hydrogen has been fused stellar nucleosynthesis stops, and the remaining helium slowly cools by radiation. Gravity contracts the star until electron degeneracy pressure compensates and it goes off the main sequence, i.e. becomes a white dwarf.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A blue straggler is a type of star that is more luminous and bluer than expected. Typically identified in a stellar cluster, they have a higher effective temperature than the main sequence turnoff point for the cluster, where ordinary stars begin to evolve towards the red giant branch. Blue stragglers were first discovered by Allan Sandage in 1953 while performing photometry of the stars in the globular cluster M3.
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age.
Star clusters are large groups of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely clustered groups of stars, generally containing fewer than a few hundred members, and are often very young.
It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pr ...
We present an analysis of the structure, kinematics, and orbit of a newly found stellar stream emanating from the globular cluster M92 (NGC 6341). This stream was discovered in an improved matched-filter map of the outer Galaxy, based on a "color-color-mag ...
Context. CP2 stars show periodic photometric, spectroscopic, and magnetic variations with the rotational period. They are generally slow rotators, with rotational periods exceeding half a day, except for the late B-type star HD 60431, which has an unusuall ...
Delves into the origin of chemical elements in the universe through nuclear astrophysics, exploring processes like Big Bang nucleosynthesis and stellar evolution.
Covers the characteristics and origins of white dwarfs and neutron stars, including their structure, evolution, and pulsations.
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.