Controlling the Topological Sector of Magnetic Solitons in Exfoliated Cr1/3NbS2 Crystals
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Cu2OSeO3 is an insulating skyrmion-host material with a magnetoelectric coupling giving rise to an electric polarization with a characteristic dependence on the magnetic-field (H) over right arrow. We report a magnetic force microscopy imaging of the helic ...
The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Ha ...
In recent years, topology gained a central role in physics. We learnt that energetics could be often explained better by classes of objects defined by having qualitative differences. In today's jargon, we say they are topologically distinct. The process of ...
Industrial transformers cores are built from stacked sheets of an iron silicon alloy, called laminations. The magnetic domain structures of these highly anisotropic electrical steels with a sharp (110)[001]-texture, the so-called Gosstexture, determines th ...
Colossal magnetoresistance and field-induced ferromagnetism are well documented in manganite compounds. Since domain wall resistance contributes to magnetoresistance, data on the temperature and magnetic field dependence of the ferromagnetic domain structu ...
Precision measurements of the magnetization and ac susceptibility of Cu2OSeO3 are reported for magnetic fields along different crystallographic directions, focusing on the border between the conical and the field-polarized state for a magnetic field along ...
The discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has generated widespread interest. Making further progress in this area requires quantitative knowledge of the magnetic properties of vdW magnets at the nanoscale. We used ...
The chiral magnet Cu2OSeO3 hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, rai ...
There once was a harsh competition between different computer memory technologies, and now we cheer triumph for the Random Access-Memory (RAM) devices, -- cheap, fast, tiny, stable. The competing Magnetic Bubble Memory had faded away as magnetic bubbles ar ...
Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated Skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single Skyrmions and clusters of Skyr ...