**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Lattice formulation of axion inflation. Application to preheating

Abstract

We present a lattice formulation of an interaction phi/Lambda F (F) over tilde between an axion and some U(1) gauge sector with the following properties: it reproduces the continuum theory up to O(dx(mu)(2)) corrections, it preserves exact gauge invariance and shift symmetry on the lattice, and it is suitable for self-consistent expansion of the Universe. The lattice equations of motion can no longer be solved by explicit methods, but we propose an implicit method to overcome this difficulty, which preserves the relevant system constraints down to arbitrary (tunable) precision. As a first application we study, in a comoving grid in (3 +1) dimensions, the last efolds of axion-inflation with quadratic potential and the preheating stage following afterwards. We fully account for the inhomogeneity and non-linearity of the system, including the gauge field contribution to the expansion rate of the Universe and its backreaction into the axion dynamics. We characterize in detail, as a function of the coupling, the energy transfer from the axion to the gauge field. Two coupling regimes are identified, sub- and super-critical, depending on whether the final energy fraction stored in the gauge field is below or above similar to 50% of the total energy. The Universe is very efficiently reheated for super-critical couplings, rapidly entering in a radiation dominated stage. Our results on preheating confirm previously published results.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (36)

Related MOOCs (1)

Related publications (39)

Gauge theory

In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.

Expansion of the universe

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.

Explicit and implicit methods

Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes. Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.

The Radio Sky I: Science and Observations

Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

In the framework of mixed Higgs-Starobinsky inflation, we consider the generation of Abelian gauge fields due to their nonminimal coupling to gravity (in two different formulations of gravity-metric and Palatini). We couple the gauge-field invariants F mu ...

2022Daniel Garcia Figueroa, Adrien Florio, Wessel Valkenburg, Francisco Torrenti

We present a comprehensive discussion on lattice techniques for the simulation of scalar and gauge field dynamics in an expanding universe. After reviewing the continuum formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds, ...

2021Daniel Garcia Figueroa, Adrien Florio, Wessel Valkenburg, Francisco Torrenti

This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is ...