Publication

Supported PtxPd1-x bimetallic nanoparticles on ionic liquid-functionalized SiO2@graphene oxide nanocomposite and its application as an effective multiphasic catalyst

Abstract

In this work, PtxPd1-x (x = 0, 0.5, and 1) nanoparticles (NPs) were synthesized on the surface of SiO2@graphene oxide which covered by 1-butyl-3-methylimidazolium hexafluorophosphate ([bmitn] PF6) ionic liquid (IL) layer. FT-IR spectroscopy, zeta potential, CHN elemental analysis, XRD, XPS, SEM, EDX, TEM, TGA, BET, and ICP-AES techniques were applied for the characterization of the multiphasic catalyst. The as-prepared nanocomposite was used as an effective heterogeneous catalyst for the oxidation of cyclohexene by molecular oxygen, as a green oxidant. Different experimental conditions such as oxygen pressure, reaction time, reaction temperature and amount of catalyst were investigated in this reaction. The bimetallic NPs showed the best catalytic activity in this reaction. The conversion and selectivity of 2-cyclohexene-1-one as main product were obtained to be 65% and 93% respectively, when the reaction was carried at 80 degrees C for 8 h. In the as-made multiphasic catalyst, IL layer not only enhanced the stability of NPs on the surface of catalyst, but also increased the catalytic performance due to the stabilization of the reaction intermediates. Among the different solvathochromic parameters, the normalized polarity (E-T(N)) and the hydrogen-bond acceptor ability (beta) of IL are the most important properties which improve the role of the IL as a co-catalyst in this reaction. This multiphasic catalyst, which has the advantages of both homogeneous and heterogeneous catalytic systems, can be easily separated from the reaction media and reused for five consecutive runs without losing the catalytic performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Catalytic reforming
Catalytic reforming is a chemical process used to convert petroleum refinery naphthas distilled from crude oil (typically having low octane ratings) into high-octane liquid products called reformates, which are premium blending stocks for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes, which are then partially dehydrogenated to produce high-octane aromatic hydrocarbons.
Heterogeneous catalysis
Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures (e.g. oil and water), or anywhere an interface is present. Heterogeneous catalysis typically involves solid phase catalysts and gas phase reactants.
Catalytic converter
A catalytic converter is an exhaust emission control device that converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves. The first widespread introduction of catalytic converters was in the United States automobile market. To comply with the U.S.
Show more
Related publications (105)

Photogeneration of Hydrogen: Insights from a Pt(II)-Complex Incorporated into a Covalent Organic Framework

Federico De Biasi, Paolo Costa

Pt(II)-based molecular catalysts stand as a prototypical system in hydrogen evolution reactions (HER) owing to their consistently elevated activity levels. Their integration into heterogeneous systems thus provides an ideal platform to develop catalytic ma ...
Wiley-V C H Verlag Gmbh2024

A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure

Paul Joseph Dyson, Mingyang Liu, Yelin Hu, Matthias Beller

Catalytic hydrogenations are important and widely applied processes for the reduction of organic compounds both in academic laboratories and in industry. To perform these reactions in sustainable and practical manner, the development and applicability of n ...
Washington2023

Anisotropic In-Plane strain engineering Ni(OH)2 to activate alkaline hydrogen evolution reaction

Kangning Zhao, Yi Yang, Chao Yang

Realizing a hydrogen economy strongly requires alkaline water electrolysis to achieve large-scale generation of H2, but lacks stable and efficient catalysts. The insufficient active sites in Ni(OH)2 impair the catalytic performance of alkaline HER. Herein, ...
ELSEVIER SCIENCE SA2023
Show more