Publication

Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice

Abstract

White adipose tissue (WAT) can differentiate into beige adipose tissue by the browning process. Some polyphenols, including isoflavones, particularly genistein, are suggested to increase the expression of browning markers. There is evidence that consumption of genistein can attenuate body weight gain and improve glucose tolerance and blood lipid levels. The aim of the present study was to investigate the potential mechanisms of stimulation by which genistein activates the browning of WAT. We studied the stimulation of the expression of browning markers in the following models: mice fed genistein; preadipocytes from 3 T3-L1 cells; and the stromal vascular fraction (SVF) from the inguinal adipose tissue of mice. The results indicated that genistein can stimulate the browning process by at least two mechanisms. An indirect mechanism was involved in the induction of PGC-1 alpha/FNDC5 in skeletal muscle leading to an increase in the myokine irisin. In preadipocytes, irisin was able to increase the expression of Ucpl and Tmem26, markers of browning, to increase energy expenditure. Interestingly, genistein was also able to activate browning by a direct mechanism. Incubation of preadipocytes with genistein increased UCP1 expression as well as some biomarkers of browning in a concentration-dependent manner, possibly via phosphorylation of AMPK. The effect of genistein was accompanied by an increase in the number of mitochondria as well as in the maximum respiration rate of the adipocytes. In conclusion, this study indicated that genistein can increase energy expenditure by stimulating the browning process directly in preadipocytes and indirectly by increasing the circulating levels of irisin. (C) 2019 Elsevier Inc. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Adipose tissue
Adipose tissue, body fat, or simply fat is a loose connective tissue composed mostly of adipocytes. In addition to adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Adipose tissue is derived from preadipocytes. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.
Brown adipose tissue
Brown adipose tissue (BAT) or brown fat makes up the adipose organ together with white adipose tissue (or white fat). Brown adipose tissue is found in almost all mammals. Classification of brown fat refers to two distinct cell populations with similar functions. The first shares a common embryological origin with muscle cells, found in larger "classic" deposits. The second develops from white adipocytes that are stimulated by the sympathetic nervous system.
Genistein
Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen. It was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of prunetol. It was chemically synthesized in 1928. It has been shown to be the primary secondary metabolite of the Trifolium species and Glycine max.
Show more
Related publications (41)

A single-cell-based characterization of mammalian adipose stem and progenitor cell heterogeneity and function

Pernille Yde Rainer

White adipose tissue (WAT) is a cellularly heterogeneous endocrine organ that not only serves as a reservoir for storing and releasing energy but also actively participates in metabolic homeostasis. Given the current rise in obesity and its associated com ...
EPFL2023

Trans-anethole Induces Thermogenesis via Activating SERCA/SLN Axis in C2C12 Muscle Cells

Sulagna Mukherjee

Recently, adaptive non-shivering thermogenesis has attracted considerable attention because it can elevate energy expenditure and help treat obesity. Despite the numerous reports related to UCP1-driven thermogenesis, little is known regarding UCP1-independ ...
KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING2022

SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice

Johan Auwerx

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD(+)-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, he ...
NATURE PORTFOLIO2022
Show more