Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The aim of this work was to develop new, organic dyes, capable of harvesting photons in the red to near-IR region of the spectrum. A series of squaraine and tricarbocyanine dyes were produced and characterised and their optical and redox properties studied ...
The dye solar cell, is a novel photoelectrochemical solar cell presenting unique advantages, as the use of low cost materials and the potential simplicity of manufacturing. However, a liquid electrolyte is actually required for the transport of the photoge ...
Novel unsym. org. sensitizers comprising donor, electron-conducting and anchoring groups were engineered at a mol. level and synthesized for sensitization of mesoscopic TiO2 injection solar cells. The unsym. org. sensitizers 3-(5-(4-(diphenylamino)styryl)t ...
Due to their high efficiencies and their potentially low production costs, dye-sensitized solar cells (DSSC) have attracted much attention during the last few years. The technology is based on a layer made of mesoscopic TiO2 film which significantly increa ...
Dye-sensitized solar cells (DSC), introduced by O'Regan and Grätzel in 1991, are a low cost alternative to conventional silicon photovoltaic cells, the latter requiring extremely pure starting materials and sophisticated production procedures. DSC's, based ...
The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composite ...