Summary
Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. Surfactants may function as emulsifiers, wetting agents, detergents, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined 1950. Surfactants are usually organic compounds that are akin to amphiphilic, which means that this molecule, being as double-agent, each contains a hydrophilic "water-seeking" group (the head), and a hydrophobic "water-avoiding" group (the tail). As a result, a surfactant contains both a water-soluble component and a water-insoluble component. Surfactants diffuse in water and get adsorbed at interfaces between air and water, or at the interface between oil and water in the case where water is mixed with oil. The water-insoluble hydrophobic group may extend out of the bulk water phase into a non-water phase such as air or oil phase, while the water-soluble head group remains bound in the water phase. The hydrophobic tail may be either lipophilic ("oil-seeking") or lipophobic ("oil-avoiding") depending on its chemistry. Hydrocarbon groups are usually lipophilic, for use in soaps and detergents, while fluorocarbon groups are lipophobic, for use in repelling stains or reducing surface tension. World production of surfactants is estimated at 15 million tons per year, of which about half are soaps. Other surfactants produced on a particularly large scale are linear alkylbenzene sulfonates (1.7 million tons/y), lignin sulfonates (600,000 tons/y), fatty alcohol ethoxylates (700,000 tons/y), and alkylphenol ethoxylates (500,000 tons/y). Wetting solution In the bulk aqueous phase, surfactants form aggregates, such as micelles, where the hydrophobic tails form the core of the aggregate and the hydrophilic heads are in contact with the surrounding liquid. Other types of aggregates can also be formed, such as spherical or cylindrical micelles or lipid bilayers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (19)

Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under Operando CO2 Electroreduction

Magalí Alejandra Lingenfelder, Fernando Pablo Cometto, Karla Banjac, Thanh Hai Phan

The electroreduction of CO2 (CO2RR) is a promising strategy toward sustainable fuels. Cu is the only Earth-abundant and pure metal capable of catalyzing CO2-to-hydrocarbons conversion with significant
AMER CHEMICAL SOC2021

Atomic-Step Enriched Ruthenium-Iridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media

Vasiliki Tileli, Junjie Li, Lei Liu, Bo Li, Yue Li

Achieving an efficient and stable oxygen evolution reaction (OER) in an acidic or neutral medium is of paramount importance for hydrogen production via proton exchange membrane water electrolysis (PEM
AMER CHEMICAL SOC2021
Show more
Related concepts (87)
Emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase).
Detergent
A detergent is a surfactant or a mixture of surfactants with cleansing properties when in dilute solutions. There are a large variety of detergents, a common family being the alkylbenzene sulfonates, which are soap-like compounds that are more soluble in hard water, because the polar sulfonate (of detergents) is less likely than the polar carboxylate (of soap) to bind to calcium and other ions found in hard water. The word detergent is derived from the Latin adjective detergens, from the verb detergere, meaning to wipe or polish off.
Amphiphile
An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (water-loving, polar) and lipophilic (fat-loving) properties. Such a compound is called amphiphilic or amphipathic. Amphiphilic compounds include surfactants (these detergents are commonly called "soap" but are different from traditional soap in both composition and method of action for cleaning). The phospholipid amphiphiles are the major structural component of cell membranes.
Show more
Related courses (9)
CH-349: Experimental physical chemistry
Experiments related to physical chemistry courses. Admission to the TP is conditional on the successful completion of 2 of the 3 courses: CH-343 Spectroscopy; PHYS-201(e) General physics: electromagn
MSE-442: Introduction to crystal growth by epitaxy
This is an interactive course explaining: 1. The main physical and chemical concepts to understand epitaxy of crystalline thin films. 2. What determines the morphology, composition and structure of a
MSE-425: Soft matter
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
Show more
Related lectures (46)
Dispersion and Van der Waals Forces
Explores dispersion production, interparticle forces, and colloidal stability.
Emulsions: Stabilization Mechanism
Explores how surfactants and colloidal particles stabilize emulsions through lowering interfacial tension and particle adsorption.
Surfactants and Micelles: Colloidal Stability
Explores the role of surfactants and micelles in achieving steric stability for ceramic production.
Show more