Algebraic quantum field theoryAlgebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Let be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net of von Neumann algebras on a common Hilbert space satisfying the following axioms: Isotony: implies .
Noncommutative quantum field theoryIn mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis.
Canonical quantum gravityIn physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity (or canonical gravity). It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice.
Equivalence principleIn the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference. History of gravitational theory Something like the equivalence principle emerged in the early 17th century, when Galileo expressed experimentally that the acceleration of a test mass due to gravitation is independent of the amount of mass being accelerated.
Tensor–vector–scalar gravityTensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm. The main features of TeVeS can be summarized as follows: As it is derived from the action principle, TeVeS respects conservation laws; In the weak-field approximation of the spherically symmetric, static solution, TeVeS reproduces the MOND acceleration formula; TeVeS avoids the problems of earlier attempts to generalize MOND, such as superluminal propagation; As it is a relativistic theory it can accommodate gravitational lensing.
Arf invariantIn mathematics, the Arf invariant of a nonsingular quadratic form over a field of characteristic 2 was defined by Turkish mathematician when he started the systematic study of quadratic forms over arbitrary fields of characteristic 2. The Arf invariant is the substitute, in characteristic 2, for the discriminant for quadratic forms in characteristic not 2. Arf used his invariant, among others, in his endeavor to classify quadratic forms in characteristic 2.
Preferred frameIn theoretical physics, a preferred frame or privileged frame is usually a special hypothetical frame of reference in which the laws of physics might appear to be identifiably different (simpler) from those in other frames. In theories that apply the principle of relativity to inertial motion, physics is the same in all inertial frames, and is even the same in all frames under the principle of general relativity.
Ε-quadratic formIn mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms.
Functional integrationFunctional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields. In an ordinary integral (in the sense of Lebesgue integration) there is a function to be integrated (the integrand) and a region of space over which to integrate the function (the domain of integration).
Frame-draggingFrame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static — rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.