Summary
In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied. The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism. ε-symmetric forms and ε-quadratic forms are defined as follows. Given a module M over a -ring R, let B(M) be the space of bilinear forms on M, and let T : B(M) → B(M) be the "conjugate transpose" involution B(u, v) ↦ B(v, u). Since multiplication by −1 is also an involution and commutes with linear maps, −T is also an involution. Thus we can write ε = ±1 and εT is an involution, either T or −T (ε can be more general than ±1; see below). Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants. As an exact sequence, As kernel and cokernel, The notation Qε(M), Qε(M) follows the standard notation MG, MG for the invariants and coinvariants for a group action, here of the order 2 group (an involution). Composition of the inclusion and quotient maps (but not 1 − εT) as yields a map Qε(M) → Qε(M): every ε-symmetric form determines an ε-quadratic form. Conversely, one can define a reverse homomorphism "1 + εT": Qε(M) → Qε(M), called the symmetrization map (since it yields a symmetric form) by taking any lift of a quadratic form and multiplying it by 1 + εT. This is a symmetric form because (1 − εT)(1 + εT) = 1 − T2 = 0, so it is in the kernel. More precisely, .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.