Kernel Regression for Graph Signal Prediction in Presence of Sparse Noise
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we revisit the kernel density estimation problem: given a kernel K(x, y) and a dataset of n points in high dimensional Euclidean space, prepare a data structure that can quickly output, given a query q, a (1 + epsilon)-approximation to mu := ...
We propose a non-parametric regression method that does not rely on the structure of the ground-truth, but only on its regularity properties. The methodology can be readily used for learning surrogate models of nonlinear dynamical systems from data, while ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit [12, 9], thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. We present the first algorithm that a ...
Human mobility prediction is an important problem which has a large num- ber of applications, especially in context-aware services. This paper presents a study on location prediction using smartphone data, in which we address mod- eling and application asp ...
The efficiency of stochastic particle schemes for large scale simulations relies on the ability to preserve a uniform distribution of particles in the whole physical domain. While simple particle split and merge algorithms have been considered previously, ...
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. We present the first algorithm that a ...