Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The recently synthesized Ag3LiIr2O6 has been proposed as a Kitaev magnet in proximity to the quantum spin liquid phase. We explore its microscopic Hamiltonian and magnetic ground state using many-body quantum chemistry methods and exact diagonalization tec ...
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-ne ...
In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many electron wave function in superconductors. Phase transitions with unknown o ...
Co-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional di ...
We examine the ground-state phase diagram and thermal phase transitions in a plaquettized fully frustrated bilayer spin-1/2 Heisenberg model. Based on a combined analysis from sign-problem free quantum Monte Carlo simulations, perturbation theory, and free ...
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...
In spin systems, geometrical frustration describes the impossibility of minimizing simultaneously all the interactions in a Hamiltonian, often giving rise to macroscopic ground-state degeneracies and emergent low-temperature physics. In this thesis, combin ...
We report on the coexistence of magnetic order and disorder in the atomically disordered double perovskites Ca2FeRuO6 and CaSrFeRuO6. Powder x-ray and neutron diffraction were used to investigate the crystal structure and magnetic ordering of these oxides. ...
Motivated by the recent success of tensor networks to calculate the residual entropy of spin ice and kagome Ising models, we develop a general framework to study frustrated Ising models in terms of infinite tensor networks that can be contracted using stan ...
Despite their simple formulation, short-range classical antiferromagnetic Ising models on frustrated lattices give rise to exotic phases of matter, in particular, due to their macroscopic ground-state degeneracy. Recent experiments on artificial spin syste ...