Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We describe the selection, implementation and online evaluation of two e-commerce recommender systems developed with our partner company, Prediggo. The first one is based on the novel method of Bayesian Variable-order Markov Modeling (BVMM). The second, SSAGD, is a novel variant of the Matrix-Factorization technique (MF), which is considered state-of-the-art in the recommender literature. We discuss the offline tests we carried out to select the best MF variant, and present the results of two A/B tests performed on live ecommerce websites after the deployment of the new algorithms. Comparing the new recommenders and Prediggo’s proprietary algorithm of Ontology Filtering, we show that the BVMM significantly outperforms the two others in terms of CTR and prediction speed, and leads to a strong increase in recommendation-mediated sales. Although MF exhibits reasonably good accuracy, the BVMM is still significantly more accurate and avoids the high memory requirements of MF. This scalability is essential for its application in online businesses.
Pavlos Nikolopoulos, Christina Fragouli, Suhas Diggavi, Sundara Rajan Srinivasavaradhan