Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We investigate how metrics that can be measured offline can be used to predict the online performance of recommender systems, thus avoiding costly A-B testing. In addition to accuracy metrics, we combine diversity, coverage, and serendipity metrics to create a new performance model. Using the model, we quantify the tradeoff between different metrics and propose to use it to tune the parameters of recommender algorithms without the need for online testing. Another application for the model is a self-adjusting algorithm blend that optimizes a recommender's parameters over time. We evaluate our findings on data and experiments from news websites.
Daniel Kressner, André Uschmajew