**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Covering convex bodies and the Closest Vector Problem

Abstract

We present faster algorithms for the approximate Closest Vector Problem under l_p norms

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (8)

Related concepts (14)

Nearest neighbor search

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values. Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol.

Learning vector quantization

In computer science, learning vector quantization (LVQ) is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems. LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to self-organizing maps (SOM) and related to neural gas, and to the k-nearest neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.

K-nearest neighbors algorithm

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the k closest training examples in a data set. The output depends on whether k-NN is used for classification or regression: In k-NN classification, the output is a class membership.

We consider integer programming problems in standard form max{c(T)x : Ax = b, x >= 0, x is an element of Z(n)} where A is an element of Z(mxn), b is an element of Z(m), and c is an element of Z(n). We show that such an integer program can be solved in time ...

As it has become easier and cheaper to collect big datasets in the last few decades, designing efficient and low-cost algorithms for these datasets has attracted unprecedented attention. However, in most applications, even storing datasets as acquired has ...

We consider integer programming problems in standard form max{c(T)x : Ax = b; x >= 0, x is an element of Z(n)} where A is an element of Z(mxn), b is an element of Z(m) and c is an element of Z(n). We show that such an integer program can be solved in time ...