Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at >= 5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder-type filter having 1 dB mid-band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i-line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion-sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well-matched to a 50 Omega network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious-free, and the filter provides better-than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high-volume manufacturing of microacoustic filters >3.5 GHz.
Luis Guillermo Villanueva Torrijo, Seniz Esra Küçük, Soumya Yandrapalli, Victor Plessky
Patrick Gerber, Mélanie Thérèse Marie Hannebelle, Nitin Arora