CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Data from animal-borne inertial sensors are widely used to investigate several aspects of an animal's life, such as energy expenditure, daily activity patterns and behaviour. Accelerometer data used in conjunction with machine learning algorithms have b ...
Current state-of-the-art models for sentiment analysis make use of word order either explicitly by pre-training on a language modeling objective or implicitly by using recurrent neural networks (RNNS) or convolutional networks (CNNS). This is a problem for ...
A Genève, comme dans de nombreuses métropoles, la problématique de la gestion des bureaux vacants est primordiale et se traduit par de nombreuses surfaces de travail qui ne trouvent pas (ou plus) preneur. Alors que la ville ne cesse de se densifier, il par ...
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of ca ...
In this paper, we study how to extract visual concepts to understand landscape scenicness. Using visual feature representations from a Convolutional Neural Network (CNN), we learn a number of Concept Activation Vectors (CAV) aligned with semantic concepts ...
We discuss some properties of generative models for word embeddings. Namely, (Arora et al., 2016) proposed a latent discourse model implying the concentration of the partition function of the word vectors. This concentration phenomenon led to an asymptotic ...
Pre-trained word vectors are ubiquitous in Natural Language Processing applications. In this paper, we show how training word embeddings jointly with bigram and even trigram embeddings, results in improved unigram embeddings. We claim that training word em ...