Publication

Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space

Abstract

This work focuses on the development of a non-conforming method for the coupling of PDEs based on weakly imposed transmission conditions: the continuity of the global solution is enforced by a finite number of Lagrange multipliers defined over the interfaces of adjacent subdomains. The method falls into the class of primal hybrid methods, which include also the well-known mortar method. Differently from the mortar method, we discretize the space of basis functions on the interface by spectral approximation independently of the discretization of the two adjacent domains. In particular, our approach can be regarded as a specialization of the three-field method in which the spaces used to enforce the continuity of the solution and its conormal derivative across the interface are taken equal. One of the possible choices to approximate the interface variational space – which we consider here – is by Fourier basis functions. As we show in the numerical simulations, the method is well-suited for the coupling of problems defined on globally non-conforming meshes or discretized with basis functions of different polynomial degree in each subdomain. We also investigate the possibility of coupling solutions obtained with incompatible numerical methods, namely the finite element method and isogeometric analysis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Numerical methods for partial differential equations
Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Finite element method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
Basis function
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors. In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points).
Show more
Related publications (58)

Modeling friction and wear using an adaptive discrete-continuum coupling

Manon Eugénie Voisin--Leprince

When two objects slide against each other, wear and friction occur at their interface. The accumulation of wear forms what is commonly referred to as a ``third-body''. Understanding third-body evolution has significant applications in industry, where contr ...
EPFL2024

A Reduced Order Model for Domain Decompositions with Non-conforming Interfaces

Alfio Quarteroni, Andrea Manzoni

In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems wi ...
New York2024

On the fast assemblage of finite element matrices with application to nonlinear heat transfer problems

The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
ELSEVIER SCIENCE INC2023
Show more
Related MOOCs (32)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.