Publication

Solid electrochemical energy storage for aqueous redox flow batteries: The case of copper hexacyanoferrate

Abstract

All redox flow batteries suffer from low energy storage density in comparison with conventional Li-ion batteries. However, this issue can be mitigated by utilization of solid energy storage materials to enhance the energy storage capacity. In this paper we demonstrate the utilization of copper hexacyanoferrate (CuHCF) Prussian blue analogue for this purpose, coupled with N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) as a soluble redox mediator to target the redox transitions of the solid material. In this case, indirect charging and discharging of CuHCF suspended in the electrolyte by electrochemically oxidized/reduced TEMPTMA was observed by chronoamperometry. Secondly, electrochemistry of different CuHCF composites with carbon black and multi-walled carbon nanotubes were investigated, highlighting that the high conductivity of the solid energy storage materials is crucial to access the maximal charge storage capacity. Finally, a CuHCF-TEMPTMA/Zn aqueous redox flow battery achieved stable cycling performances with high coulombic efficiency of 95% and volumetric capacity of 350 C mL−1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Flow battery
A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell (accompanied by flow of electric current through an external circuit) occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.
Energy storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.
Lithium-ion battery
A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. The negative electrode of a conventional lithium-ion cell is typically graphite, a form of carbon. This negative electrode is sometimes called the anode as it acts as an anode during discharge. The positive electrode is typically a metal oxide; the positive electrode is sometimes called the cathode as it acts as a cathode during discharge.
Show more
Related publications (68)

Dynamic Behavior of Spatially Confined Sn Clusters and Its Application in Highly Efficient Sodium Storage with High Initial Coulombic Efficiency

Kumar Varoon Agrawal, Lei Zhang, Kangning Zhao, Xu Xu

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized S ...
Weinheim2024

Electrochemical Hydrophobic Tri-layer Interface Rendered Mechanically Graded Solid Electrolyte Interface for Stable Zinc Metal Anode

Lei Zhang, Kangning Zhao

The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic li ...
Weinheim2024

Fluoride-Rich, Organic-Inorganic Gradient Interphase Enabled by Sacrificial Solvation Shells for Reversible Zinc Metal Batteries

Lei Zhang, Kangning Zhao, Jun Lu, Xu Zhang

Zinc metal batteries are strongly hindered by water corrosion, as solvated zinc ions would bring the active water molecules to the electrode/electrolyte interface constantly. Herein, we report a sacrificial solvation shell to repel active water molecules f ...
Washington2023
Show more
Related MOOCs (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.