Rate of convergenceIn numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence that converges to is said to have order of convergence and rate of convergence if The rate of convergence is also called the asymptotic error constant. Note that this terminology is not standardized and some authors will use rate where this article uses order (e.g., ).
Resampling (statistics)In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.
Risk-neutral measureIn mathematical finance, a risk-neutral measure (also called an equilibrium measure, or equivalent martingale measure) is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure.
Arithmetic–geometric meanIn mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means: Begin the sequences with x and y: Then define the two interdependent sequences (an) and (gn) as These two sequences converge to the same number, the arithmetic–geometric mean of x and y; it is denoted by M(x, y), or sometimes by agm(x, y) or AGM(x, y). The arithmetic–geometric mean is used in fast algorithms for exponential and trigonometric functions, as well as some mathematical constants, in particular, computing π.
SciPySciPy (pronounced 'saɪpaɪ "sigh pie") is a free and open-source Python library used for scientific computing and technical computing. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and , ODE solvers and other tasks common in science and engineering. SciPy is also a family of conferences for users and developers of these tools: SciPy (in the United States), EuroSciPy (in Europe) and SciPy.in (in India).
Standard probability spaceIn probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms. The theory of standard probability spaces was started by von Neumann in 1932 and shaped by Vladimir Rokhlin in 1940.
Girsanov theoremIn probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.
Product measureIn mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology of two topological spaces, except that there can be many natural choices for the product measure. Let and be two measurable spaces, that is, and are sigma algebras on and respectively, and let and be measures on these spaces.
Fuzzy measure theoryIn mathematics, fuzzy measure theory considers generalized measures in which the additive property is replaced by the weaker property of monotonicity. The central concept of fuzzy measure theory is the fuzzy measure (also capacity, see ), which was introduced by Choquet in 1953 and independently defined by Sugeno in 1974 in the context of fuzzy integrals. There exists a number of different classes of fuzzy measures including plausibility/belief measures; possibility/necessity measures; and probability measures, which are a subset of classical measures.