DissipationIn thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form. For example, transfer of energy as heat is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and spreads previously concentrated energy.
Energy policyEnergy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy is a core component of modern economies.
Ice cubeAn ice cube is a small piece of ice, which is typically rectangular as viewed from above and trapezoidal as viewed from the side. Ice cubes are products of mechanical refrigeration and are usually produced to cool beverages. They may be produced at home in a freezer with an ice tray or in an automated ice-making accessory. They may also be produced industrially and sold commercially. American physician and inventor John Gorrie built a refrigerator in 1844 with the purpose of producing ice to cool air.
Grand potentialThe grand potential or Landau potential or Landau free energy is a quantity used in statistical mechanics, especially for irreversible processes in open systems. The grand potential is the characteristic state function for the grand canonical ensemble. Grand potential is defined by where U is the internal energy, T is the temperature of the system, S is the entropy, μ is the chemical potential, and N is the number of particles in the system.
IcebreakerAn icebreaker is a special-purpose ship or boat designed to move and navigate through ice-covered waters, and provide safe waterways for other boats and ships. Although the term usually refers to ice-breaking ships, it may also refer to smaller vessels, such as the icebreaking boats that were once used on the canals of the United Kingdom. For a ship to be considered an icebreaker, it requires three traits most normal ships lack: a strengthened hull, an ice-clearing shape, and the power to push through sea ice.
WaterwayA waterway is any navigable body of water. Broad distinctions are useful to avoid ambiguity, and disambiguation will be of varying importance depending on the nuance of the equivalent word in other languages. A first distinction is necessary between maritime shipping routes and waterways used by inland water craft. Maritime shipping routes cross oceans and seas, and some lakes, where navigability is assumed, and no engineering is required, except to provide the draft for deep-sea shipping to approach seaports (channels), or to provide a short cut across an isthmus; this is the function of ship canals.
NavigabilityA body of water, such as a river, canal or lake, is navigable if it is deep, wide and calm enough for a water vessel (e.g. boats) to pass safely. Such a navigable water is called a waterway, and is preferably with few obstructions against direct traverse that needed avoiding, such as rocks, reefs or trees. Bridges built over waterways must have sufficient clearance. High flow speed may make a channel unnavigable due to risk of ship collisions. Waters may be unnavigable because of ice, particularly in winter or high-latitude regions.
Thermal fluidsThermofluids is a branch of science and engineering encompassing four intersecting fields: Heat transfer Thermodynamics Fluid mechanics Combustion The term is a combination of "thermo", referring to heat, and "fluids", which refers to liquids, gases and vapors. Temperature, pressure, equations of state, and transport laws all play an important role in thermofluid problems. Phase transition and chemical reactions may also be important in a thermofluid context. The subject is sometimes also referred to as "thermal fluids".