Mirror, Mirror, on the Wall, Who’s Got the Clearest Image of Them All?—A Tailored Approach to Single Image Reflection Removal
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials desi ...
Test time augmentation has been shown to be an effective approach to combat domain shifts in deep learning. Despite their promising performance levels, the interpretability of the underlying used models is however low. Saliency maps have been widely used i ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
The ability to forecast human motion, called ``human trajectory forecasting", is a critical requirement for mobility applications such as autonomous driving and robot navigation. Humans plan their path taking into account what might happen in the future. S ...
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
In situ scanning transmission electron microscopy enables observation of the domain dynamics in ferroelectric materials as a function of externally applied bias and temperature. The resultant data sets contain a wealth of information on polarization switch ...