Logic optimizationLogic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.
Logic synthesisIn computer engineering, logic synthesis is a process by which an abstract specification of desired circuit behavior, typically at register transfer level (RTL), is turned into a design implementation in terms of logic gates, typically by a computer program called a synthesis tool. Common examples of this process include synthesis of designs specified in hardware description languages, including VHDL and Verilog. Some synthesis tools generate bitstreams for programmable logic devices such as PALs or FPGAs, while others target the creation of ASICs.
Register-transfer levelIn digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals. Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
And-inverter graphAn and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network. An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation. This representation of a logic function is rarely structurally efficient for large circuits, but is an efficient representation for manipulation of boolean functions.
Combinational logicIn automata theory, combinational logic (also referred to as time-independent logic or combinatorial logic ) is a type of digital logic which is implemented by Boolean circuits, where the output is a pure function of the present input only. This is in contrast to sequential logic, in which the output depends not only on the present input but also on the history of the input. In other words, sequential logic has memory while combinational logic does not.
Logic gateA logic gate is an idealized or physical device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see ideal and real op-amps for comparison). In the real world, the primary way of building logic gates uses diodes or transistors acting as electronic switches.
Interprocedural optimizationInterprocedural optimization (IPO) is a collection of compiler techniques used in computer programming to improve performance in programs containing many frequently used functions of small or medium length. IPO differs from other compiler optimizations by analyzing the entire program as opposed to a single function or block of code. IPO seeks to reduce or eliminate duplicate calculations and inefficient use of memory and to simplify iterative sequences such as loops.
Infinite-valued logicIn logic, an infinite-valued logic (or real-valued logic or infinitely-many-valued logic) is a many-valued logic in which truth values comprise a continuous range. Traditionally, in Aristotle's logic, logic other than bivalent logic was abnormal, as the law of the excluded middle precluded more than two possible values (i.e., "true" and "false") for any proposition. Modern three-valued logic (ternary logic) allows for an additional possible truth value (i.e.
Many-valued logicMany-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2. Those most popular in the literature are three-valued (e.g.