Polisis: Automated Analysis and Presentation of Privacy Policies Using Deep Learning
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In human-computer interaction, self-disclosure of sensitive information regarding distressing experiences requires the establishment of a trust channel between the user and the digital tool. As privacy and security have been identified as factors that cont ...
The ever-growing number of edge devices (e.g., smartphones) and the exploding volume of sensitive data they produce, call for distributed machine learning techniques that are privacy-preserving. Given the increasing computing capabilities of modern edge de ...
Predicting where a person is looking is a complex task, requiring to understand not only the person's gaze and scene content, but also the 3D scene structure and the person's situation (are they manipulating? interacting or observing others? attentive?) to ...
To help fighting the COVID-19 pandemic, the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) project proposed a Decentralized Privacy-Preserving Proximity Tracing (DP3T) system. This helps tracking the spread of SARS-CoV-2 virus while keeping th ...
In this thesis, we focus on the problem of achieving practical privacy guarantees in machine learning (ML), where the classic differential privacy (DP) fails to maintain a good trade-off between user privacy and data utility. Differential privacy guarantee ...
The COVID-19 pandemic created a noticeable challenge to the cryptographic community with the development of contact tracing applications. The media reported a dispute between designers proposing a centralized or a decentralized solution (namely, the PEPP-P ...
This paper considers the problem of enhancing user privacy in common machine learning development tasks, such as data annotation and inspection, by substituting the real data with samples form a generative adversarial network. We propose employing Bayesian ...
Crowdsourcing enables application developers to benefit from large and diverse datasets at a low cost. Specifically, mobile crowdsourcing (MCS) leverages users' devices as sensors to perform geo-located data collection. The collection of geo-located data r ...
%0 Conference Paper %T Bayesian Differential Privacy for Machine Learning %A Aleksei Triastcyn %A Boi Faltings %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E A ...
In Alan Westin's generally accepted definition of privacy, he describes it as an individual's right 'to control, edit, manage, and delete information about them[selves] and decide when, how, and to what extent information is communicated to others.' There ...