Publication

Electric field exfoliation and high-T-C superconductivity in field-effect hole-doped hydrogenated diamond (111)

Abstract

We investigate the possible occurrence of field-effect induced superconductivity in the hydrogenated (111) diamond surface by first-principles calculations. By computing the band alignment between bulk diamond and the hydrogenated surface, we show that the electric field exfoliates the sample, separating the electronic states at the valence band top from the bulk projected ones. At the hole doping values considered here, ranging from n = 2.84 x 10(13) cm(-2) to n = 6 x 10(14) cm(-2), the valence band top is composed of up to three electronic bands hosting holes with different effective masses. These bands resemble those of the undoped surface, but they are heavily modified by the electric field and differ substantially from a rigid doping picture. We calculate superconducting properties by including the effects of charging of the slab and of the electric field on the structural properties, electronic structure, phonon dispersion and electron-phonon coupling. We find that at a doping level as large as n = 6 x 10(14) cm(-2), the electron-phonon interaction is lambda = 0.81 and superconductivity emerges with T-C approximate to 29-36 K. Superconductivity is mostly supported by in-plane diamond phonon vibrations and to a lesser extent by some out-of-plane vibrations. The relevant electron-phonon scattering processes involve both intra and interband scattering so that superconductivity is multiband in nature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.