Synergy of classical and quantum computational methods to investigate the properties of microporous materials
Related publications (49)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
Industrial chemistry heavily relies on traditional separation methods which are both energy-demanding and environmentally detrimental. This thesis addresses critical separation challenges, specifically carbon capture applications and the separation of ethy ...
Biorefineries hold the potential to provide products and energy carriers at reduced environmental impact compared to their fossil-based counterparts. Thus, they can contribute to the decarbonization of sectors in which electrification of demands is challen ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
NMR crystallography has been around for half a century, but with the advent of NMR crystal structure determination protocols in the last decade it has shown perspectives that were not seen before. Amalgamation of NMR and crystal structure determination has ...
The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
Metal-organic Frameworks (MOFs) are a class of crystalline porous materials with exceptionally high surface area, chemical tunability and stability. Due to alarming CO2 emission and global concern, research is focused on developing porous materials like MO ...
Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environme ...
Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fr ...
The removal of organophosphorus (OP) herbicides fromwater hasbeen studied using adsorptive removal, chemical oxidation, electrooxidation,enzymatic degradation, and photodegradation. The OP herbicide glyphosate(GP) is one of the most used herbicides worldwi ...