Interprocedural optimizationInterprocedural optimization (IPO) is a collection of compiler techniques used in computer programming to improve performance in programs containing many frequently used functions of small or medium length. IPO differs from other compiler optimizations by analyzing the entire program as opposed to a single function or block of code. IPO seeks to reduce or eliminate duplicate calculations and inefficient use of memory and to simplify iterative sequences such as loops.
Runtime systemIn computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the run time). Most programming languages have some form of runtime system that provides an environment in which programs run.
Common Language RuntimeThe Common Language Runtime (CLR), the virtual machine component of Microsoft .NET Framework, manages the execution of .NET programs. Just-in-time compilation converts the managed code (compiled intermediate language code) into machine instructions which are then executed on the CPU of the computer. The CLR provides additional services including memory management, type safety, exception handling, garbage collection, security and thread management. All programs written for the .
Natural topologyIn any domain of mathematics, a space has a natural topology if there is a topology on the space which is "best adapted" to its study within the domain in question. In many cases this imprecise definition means little more than the assertion that the topology in question arises naturally or canonically (see mathematical jargon) in the given context. Note that in some cases multiple topologies seem "natural". For example, if Y is a subset of a totally ordered set X, then the induced order topology, i.e.
RewritingIn mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable.