Publication

Texture-driven parametric snakes for semi-automatic image segmentation

Abstract

We present a texture-driven parametric snake for semi-automatic segmentation of a single and closed structure in an image. We propose a new energy functional that combines intensity and texture information. The two types of image information are balanced using Fisher's linear discriminant analysis. The framework can be used with any filter-based texture features. The parametric representation of the snake allows for easy and friendly user interaction while the framework can be trained on-the-fly from pixel collections provided by the user. We demonstrate the efficiency of the snake through an extensive validation on synthetic as well as on real data. Additionally, we show that the proposed snake is robust to noise and that it improves the segmentation performance when compared to an intensity-only scheme.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.