Graph Learning with Partial Observations: Role of Degree Concentration
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Goods can exhibit positive externalities impacting decisions of customers in social networks. Suppliers can integrate these externalities in their pricing strategies to increase their revenue. Besides optimizing the prize, suppliers also have to consider t ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be conveniently depicted by multi-relational graphs. While inference of continuous node features across a simple graph is rather under-studied by the c ...
In many applications, a dataset can be considered as a set of observed signals that live on an unknown underlying graph structure. Some of these signals may be seen as white noise that has been filtered on the graph topology by a graph filter. Hence, the k ...
Information retrieval (IR) systems such as search engines are important for people to find what they need among the tremendous amount of data available in their organization or on the Internet. These IR systems enable users to search in a large data collec ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL ...
We are interested in multilayer graph clustering, which aims at dividing the graph nodes into categories or communities. To do so, we propose to learn a clustering-friendly embedding of the graph nodes by solving an optimization problem that involves a fid ...
Context: Exploring the design space is an important process in a design task. In this study, we considered design space exploration for the learners in vocational education and training (VET). The goal of the study was to investigate how they explore the d ...