Geometry of adversarial robustness of deep networks: methods and applications
Related publications (86)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recent work has proposed novel data augmentation methods to improve the adversarial robustness of deep neural networks. In this paper, we re-evaluate such methods through the lens of different metrics that characterize the augmented manifold, finding contr ...
Most recent test-time adaptation methods focus on only classification tasks, use specialized network architectures, destroy model calibration or rely on lightweight information from the source domain. To tackle these issues, this paper proposes a novel Tes ...
We initiate the study of neural network quantum state algorithms for analyzing continuous-variable quantum systems in which the quantum degrees of freedom correspond to coordinates on a smooth manifold. A simple family of continuous-variable trial wavefunc ...
Forecasting is a capability inherent in humans when navigating. Humans routinely plan their paths, considering the potential future movements of those around them. Similarly, to achieve comparable sophistication and safety, autonomous systems must embrace ...
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
The successes of deep learning for semantic segmentation can in be, in part, attributed to its scale: a notion that encapsulates the largeness of these computational architectures and the labeled datasets they are trained on. These resource requirements hi ...
We address the problem of stably and efficiently training a deep neural network robust to adversarial perturbations bounded by an l1 norm. We demonstrate that achieving robustness against l1-bounded perturbations is more challenging than in the l2 ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
Stereo confidence estimation aims to estimate the reliability of the estimated disparity by stereo matching. Different from the previous methods that exploit the limited input modality, we present a novel method that estimates confidence map of an initial ...