Language Independent Query by Example Spoken Term Detection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many pathologies cause impairments in the speech production mechanism resulting in reduced speech intelligibility and communicative ability. To assist the clinical diagnosis, treatment and management of speech disorders, automatic pathological speech asses ...
In Bourlard and Kamp (Biol Cybern 59(4):291-294, 1998), it was theoretically proven that autoencoders (AE) with single hidden layer (previously called "auto-associative multilayer perceptrons") were, in the best case, implementing singular value decomposit ...
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor-intensive and time-consuming to produce. Moreover, professional photograph interpreter ...
This thesis consists of three applications of machine learning techniques to risk management. The first chapter proposes a deep learning approach to estimate physical forward default intensities of companies. Default probabilities are computed using artifi ...
In the recent years, Deep Neural Networks (DNNs) have managed to succeed at tasks that previously appeared impossible, such as human-level object recognition, text synthesis, translation, playing games and many more. In spite of these major achievements, o ...
Training deep neural network based Automatic Speech Recognition (ASR) models often requires thousands of hours of transcribed data, limiting their use to only a few languages. Moreover, current state-of-the-art acoustic models are based on the Transformer ...
With the recent developments of Deep Learning, having an accurate and device specific latency prediction for Deep Neural Networks (DNNs) has become important for both the manual and automatic design of efficient DNNs. Directly predicting the latency of DNN ...
We establish a direct connection between general tensor networks and deep feed-forward artificial neural networks. The core of our results is the construction of neural-network layers that efficiently perform tensor contractions and that use commonly adopt ...
Thanks to Deep Learning Text-To-Speech (TTS) has achieved high audio quality with large databases. But at the same time the complex models lost any ability to control or interpret the generation process. For the big challenge of affective TTS it is infeasi ...
The application of machine learning to theoretical chemistry has made it possible to combine the accuracy of quantum chemical energetics with the thorough sampling of finite-temperature fluctuations. To reach this goal, a diverse set of methods has been pr ...