In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
In , morphism is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism.
The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the intuition underlying them, comes from , where the objects are simply sets with some additional structure, and morphisms are structure-preserving functions. In category theory, morphisms are sometimes also called arrows.
A C consists of two classes, one of and the other of . There are two objects that are associated to every morphism, the and the . A morphism f from X to Y is a morphism with source X and target Y; it is commonly written as or the latter form being better suited for commutative diagrams.
For many common categories, objects are sets (often with some additional structure) and morphisms are functions from an object to another object. Therefore, the source and the target of a morphism are often called and respectively.
Morphisms are equipped with a partial binary operation, called . The composition of two morphisms f and g is defined precisely when the target of f is the source of g, and is denoted g ∘ f (or sometimes simply gf). The source of g ∘ f is the source of f, and the target of g ∘ f is the target of g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
In , a branch of mathematics, a section is a right inverse of some morphism. , a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of . Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms.
In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend Let be a function from a set to a set If a set is a subset of then the restriction of to is the function given by for Informally, the restriction of to is the same function as but is only defined on .
In mathematics, a concrete category is a that is equipped with a faithful functor to the (or sometimes to another category, see Relative concreteness below). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the and the , and trivially also the category of sets itself. On the other hand, the is not concretizable, i.
Explores small order groups, group morphisms, and the second isomorphism theorem.
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
Chirality is present as a trend of research in biological and chemical communities for it has a significant effect on physiological properties and pharmacological effects. Further, manipulating specific morphological chirality recently has emerged as a pro ...
We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar- ...