Twisting structures and morphisms up to strong homotopy
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis is part of a program initiated by Riehl and Verity to study the category theory of (infinity,1)-categories in a model-independent way. They showed that most models of (infinity,1)-categories form an infinity-cosmos K, which is essentially a cat ...
We prove that the category of rational SO(2)-equivariant spectra has a simple algebraic model. Furthermore, all of our model categories and Quillen equivalences are monoidal, so we can use this classification to understand ring spectra and module spectra v ...
A multifiltration is a functor indexed by Nr that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural Nr-graded R[x(1),...x(r)]-module structure on the homology of a multifiltration of ...
Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constructed a strict model of its loop space (Omega) over tild ...
Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as we ...
We prove existence results à la Jeff Smith for left-induced model category structures, of which the injective model structure on a diagram category is an important example. We further develop the notions of fibrant generation and Postnikov presentation fro ...
We prove existence results a la Jeff Smith for left-induced model category structures, of which the injective model structure on a diagram category is an important example. We further develop the notions of fibrant generation and Postnikov presentation fro ...
Let G be a finite group and R be a commutative ring. The Mackey algebra μR(G) shares a lot of properties with the group algebra RG however, there are some differences. For example, the group algebra is a symmetric algebra and this is not always the case fo ...
We investigate correspondence functors, namely the functors from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. They have various specific properties which do not hold for other types of functor ...
Consider a fibration sequence of topological spaces which is preserved as such by some functor , so that is again a fibration sequence. Pull the fibration back along an arbitrary map into the base space. Does the pullback fibration enjoy the same property? ...