Is There an Analog of Nesterov Acceleration for MCMC?
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The central task in many interactive machine learning systems can be formalized as the sequential optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based framework for \emph{adaptive} experimentation, where the primary go ...
Deriving the time-dependent expected reward function associated with a continuous-time Markov chain involves the computation of its transient deviation matrix. In this paper we focus on the special case of a finite quasi-birth-and-death (QBD) process, moti ...
We give an information-theoretic interpretation of Canonical Correlation Analysis (CCA) via (relaxed) Wyner's common information. CCA permits to extract from two high-dimensional data sets low-dimensional descriptions (features) that capture the commonalit ...
In this paper, we study the problems of principal Generalized Eigenvector computation and Canonical Correlation Analysis in the stochastic setting. We propose a simple and efficient algorithm, Gen-Oja, for these problems. We prove the global convergence of ...
In this paper, we propose a scalable algorithm for spectral embedding. The latter is a standard tool for graph clustering. However, its computational bottleneck is the eigendecomposition of the graph Laplacian matrix, which prevents its application to larg ...
We consider two statistical problems at the intersection of functional and non-Euclidean data analysis: the determination of a Fréchet mean in the Wasserstein space of multivariate distributions; and the optimal registration of deformed random measures and ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
The concept of causality is naturally related to processes developing over time. Central ideas of causal inference like time-dependent confounding (feedback) and mediation should be viewed as dynamic concepts. We shall study these concepts in the context o ...
Understanding the implicit bias of training algorithms is of crucial importance in order to explain the success of overparametrised neural networks. In this paper, we study the dynamics of stochastic gradient descent over diagonal linear networks through i ...
AIM: To characterise the corticoreticular pathway (CRP) in a case -control cohort of adolescent idiopathic scoliosis (AIS) patients using high -resolution slice -accelerated readoutsegmented echo -planar diffusion tensor imaging (DTI) to enhance the discri ...