Publication

Method, system, and device for learned invariant feature transform for computer images

Abstract

A method for training a feature detector of an image processing device, including the steps of detecting features in the image to generate a score map, computing a center of mass on the score map to generate a location, extracting a patch from the image at the location by a first spatial transformer, estimating an orientation of the patch, rotating the patch in accordance with the patch orientation with a second spatial transformer, and describing the rotated patch to create a description vector.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (30)
Digital image processing
Digital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Image analysis
Image analysis or imagery analysis is the extraction of meaningful information from s; mainly from s by means of techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face. Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information.
Feature (computer vision)
In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Show more
Related publications (58)

Aggregating Spatial and Photometric Context for Photometric Stereo

David Honzátko

Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024

Two-level Data Augmentation for Calibrated Multi-view Detection

Pascal Fua, Martin Pierre Engilberge, Zhiye Wang, Haixin Shi

Data augmentation has proven its usefulness to improve model generalization and performance. While it is commonly applied in computer vision application when it comes to multi-view systems, it is rarely used. Indeed geometric data augmentation can break th ...
2023

Attribute Prediction as Multiple Instance Learning

Devis Tuia, Diego Marcos Gonzalez

Attribute-based representations help machine learning models perform tasks based on human understandable concepts, allowing a closer human-machine collaboration. However, learning attributes that accurately reflect the content of an image is not always str ...
2022
Show more
Related MOOCs (10)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.